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Coarse-grained simulation of chaotic mixing in laminar flows
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A model for chaotic mixing has been formulated and tested. The advection of a passive scalar by laminar
flows with high Péclet numbers is modeled by a finite-volume method on a coarse grid. The scales which are
smaller than the increment of the grid are modeled by an approximate subgrid model. The artificial diffusivity
of the finite-difference method plays a twofold role. It prevents the formation of spurious oscillations of the
solution and also models the transport of the variation of the scalar from the large to subgrid modes.
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I. INTRODUCTION

In this paper we consider the mixing of a passive scalar,
with coefficient of diffusion D, by a laminar flow. If the
substance is carried by an incompressible flowfield u;(z,x;)
with characteristic length L and characteristic velocity U, the
dimensionless advection-diffusion equation of the process
reads

aC aC 1 &#C
—+uy——-——=0, (1)
ot dx;  Pe dx;

where C(z,x;) is the concentration and Pe=LU/D is the Pé-
clet number. Multiplying Eq. (1) by C yields, after some
algebra, the following equation for the scalar variance:
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i.e., the variance decreases due to the diffusivity until the
system reaches a spatially uniform state. If diffusivity is low,
i.e., Pe>1 the mixing is slow unless it is enhanced by an
appropriate flowfield. The route to effective mixing is then a
chaotic flow; such flows have, over the last 20 years or so,
been shown to provide the paradigm for effective mixing at
small scales [1-4].

The main features of the laminar mixing at high Pe are
captured by the so-called “lamellar” model [5-12]. At the
initial stages of chaotic mixing, the streams to be mixed are
advected and stretched by the flow and the interface between
the components grows exponentially with time. A compli-
cated structure of thin striations of the components then
emerges in the mixing zone. Since the flow is incompress-
ible, stretching in one direction means contraction in at least
one other direction; the striation thickness and separation
decrease, until diffusion smooths out the deviations of the
concentration. Although the lamellar model captures the es-
sential physics of the process, it also predicts a very fast
superexponential decay of the variations of the scalar. Since
Eq. (1) is a linear one, the concentration field C can be rep-
resented as a linear combination of noninteracting modes.
These so-called “strange” modes decay exponentially as the
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Thiffeault [11] considered the strange eigenmodes in La-
grangian coordinates; it was shown that the lamellar model
becomes invalid when the gradients along the stable direc-
tion become smaller than the gradients in the orthogonal di-
rection.

The numerical solution of Eq. (1) with high Pe is almost
as time-consuming as a direct numerical simulation of a tur-
bulent flow with high Re. The similarity between chaotic
advection and turbulence has an important implication. Al-
though no universal theory of turbulence has ever been for-
mulated, the decades-long experience of turbulence model-
ing says that numerous empirical, semiempirical, and
analytical models based on different types of closure as-
sumptions can be and have to be formulated [13-15].

In the present investigation we consider a numerical
method for simulation of laminar mixing on a coarse grid.
The large scales of the concentration field are resolved by a
finite-volume method. A closure assumption is used to ac-
count for the subgrid scales. The proposed model, although it
cannot be derived from first principles, captures the two
main features of the chaotic mixing, namely, lamellar struc-
ture of the concentration field and exponential decay of the
variations of the scalar. A similar approach, i.e., direct track-
ing at large scales together with an approximate modeling of
the subgrid scales has been used in Ref. [16] to simulate
evolution of a passive interface between two immiscible lig-
uids with identical mechanical properties.

II. THE MODEL

In order to get rid of the scales less than the grid spacing
Ax we use the same idea which was successfully used in
large-eddy simulations of turbulent flows [13,14]. Let us de-
fine a filter operator which acts on a function f as

o L[
o= | A2 b ®

where the averaging is performed over a region with a char-
acteristic size h, d is the dimension of the space, and the
function F satisfies the following conditions: (i) F(z)=0;

concentration field approaches the fully mixed state. (i) [oF(2)dz=1.
Even if the initial conditions of Eq. (1) are smooth
enough, the flow field sharpens the gradients of the solution.
*Electronic address: a.vikhansky @qmul.ac.uk Therefore, the filter operation has to be applied to C(z,x;)
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after every time interval Az in order to keep the concentration
field smooth. Since the filtration spreads every perturbation
over a region of order A, the effect of filtration is similar to a
diffusion with diffusivity coefficient D~ h?/At. Thus, we
postulate that C(z,x;) satisfies the following equation:
gC  dC 1 #C ﬁ( aé)
_+uk____2__ mn . |
ot dx;  Pedx; dx, x,,

(4)

where D,,, is the artificial (anisotropic) diffusivity which will
be specified below. In the above equation we assume that the
characteristic scale of the flowfield is bigger than & and

wt,x) = w(t,x),  w(1,x,)C(t,x)) = wy (¢,x,) C(2,x)).

Note that in the large-eddy simulation of turbulent flows the
turbulent viscosity is accounting for a real physical process,
i.e., momentum transport by small eddies. In the present
model the artificial diffusivity is introduced because the
scales smaller than the grid increment Ax of our finite-
volume method cannot be resolved properly. The artificial
diffusivity does not represent any physical process and intro-
duces an error which decreases as Ax and & get smaller.

Let us split the concentration field into filtered and fluc-
tuating parts

C(t,x) = C(t,x;) + c(t,x)), (5)

where c(¢,x;)=0 and C(z,x;)c(t,x;)=0. Substitution of Eq.
(5) into Eq. (2) yields two uncoupled equations for C> and
2, respectively. At this point we make our first approxima-
tion. The additional diffusive term in Eq. (4) is due to the
filtration of the concentration field and the variation of the
concentration which is dissipated by the artificial diffusion
has to appear at the subgrid level. Therefore we postulate an

equation for ¢* of the following form:

) aC aC
po 7= poAut 2D = = (6)
Pe dx; Pe ox,, 0x,,

-t u
ot &xk

where A;;=dc/dx;dc/dx; and the last term shows how fast
the varlatlon of the scalar is transported from the large to the
subgrid unresolved scales.

In order to obtain an equation for the tensor A;; we apply
the operator

dC d

aC d
—_ —
ﬁxiﬁxj

o'?xjﬂ_x,
to Eq. (1). As in Eq. (6) the dissipation at the large scales

serves as a source at the subgrid scales and the equation for
A;; reads

dA; dA;;  duy w1 PA,
—l+uk—1+ Akj+ ik __'Lz_ Blkk]+Sl]’
Jt ox, Xk z?x,- (9)(] Pe Pe

)

where Bjj=(c/ dx;dx,)(Pcl dx;dx; and S;; are the dissipa-
tion and the production terms, respectively.

The production term S,-j must satisfy the following condi-
tions: (i) it has to be collinear to dC/dx;dC/ dx;, i.e., the
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subgrid interface is parallel to the coarse-grained one; (ii) it
has to be proportional to the production term in Eq. (6); (iii)

the characteristic scale of Sl«j is Ax. Combining these condi-
tions yields

P —\ -2
S _ZDmn<££)<ﬂcﬁC>(£) ©

YT (Ax)?\ ox,, 0x, ) \ ax; 0x;) \ oxy)
Note that in a chaotic flow, the principal axis and growth rate
of A;; reach their asymptotic values exponentially fast. Thus,

S,J is only an “ignition spark” and its form does not really
affect the outcome of the calculations.

In the present investigation we use the following closure
approximation for the dissipation rate of the subgrid gradi-
ents which follows from dimensional arguments

A
Biyj=(1+p) C=’;"Aij, (9)

where S is a parameter. In order to elucidate the meaning of
Eq. (9) let us consider a zero-dimensional counterpart of Egs.
4), (6), (7), and (9). A spatially uniform (at large scales)
lamellar structure which is stretched with a constant rate A is
characterized by the single component A;;=A. Thus, the Eqs.
(6) and (7) read
2 2
2, dA_ o 20+PA

= =. 10
dt Pe dt Pe (2 (10)

Initially ¢> does not change (if Pe>>1), while A grows
with exponent 2\ and the characteristic striation thickness
85~ (c*/A)'? decreases with the exponent —\. At time
t-~X"'In(APe/B) when A becomes high enough,

Egs. (10) admit an exponential solution ¢®>~ exp(—2\/ 1),
A ~exp(=2\/Bt), which means that the striation thickness &
remains constant at the latter stages of the mixing process. If
B=0 the striation thickness scales as 6~exp(—Af) and the
variation of the scalar decreases superexponentially as it is
predicted by the lamellar model: ¢? ~exp(-\"! Pe~!§72).

The system of Egs. (4) and (6)—(9) provides a closed de-
scription of the process. To perform the calculations we have
to specify the artificial diffusion D. We reject the simplest
choice D=const as introducing too high error in the solution.
Note that the transport from the large to the subgrid scales
takes place at the regions with high gradients of the concen-
tration. It is also known that a numerical solution of Eq. (1)
suffers from spurious oscillations at these regions and an
extra diffusion is applied locally to keep the numerical
scheme monotone [17]. Therefore, it is quite natural to com-
bine these two tasks, i.e., we can solve Eq. (1) by a mono-
tone scheme with an artificial diffusion and the artificial dif-
fusivity of this scheme can be used to evaluate the transport
of the scalar variance from large to subgrid scales. In the
present investigation we use the flux-corrected transport
(FCT) method described in the Ref. [17]. A one-dimensional
advection equation d,¢p+ Ud,¢p=0 is solved on a uniform grid
with space increment Ax as follows.

(1) Compute a first-order upwind flux Q1)
=max(U,0)¢;+min(U,0)¢;,,, then the low-order solution
reads
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~ At
bi=¢) - E[Qnu/z) - 0Qiaml (11)

(2) Compute the second-order antidiffusive flux

1
0l =511 = ). (12)

(3) Limit the antidiffusion flux so that the solution, as
computed in step 4, is free of the spurious oscillations

d
Oiv12) = Xir(12) Qi (172) -

(4) Apply the correction flux to get the new solution

~ At
bi=di— E[Qf+(1/2) - Qf_(l/z)]- (13)

Equations (11)—(13) have first-order accuracy in time and we
use these equations to construct a fourth-order Runge-Kutta
method. Thus, the numerical diffusion of the method is due
to the finite-difference representation of the spatial derivative
in the advection equation. Since the numerical diffusivity of
Eq. (11) is 1/2UAx, the artificial diffusivity of Egs.
(11)—(13) is

1
Dy ivi) = SXis(172) UAx. (14)

Other components of the tensor D,,, can be calculated in the
same way.

III. RESULTS AND DISCUSSION

In evaluating the models described above, we consider
mixing by a (two-dimensional) model chaotic “sine flow”
[18]. The flow takes place in a square box 0<x,y<1 with
sides x=0 and x=1 identified (so that fluid passing through
one side reenters through the other), and similarly for the
sides y=0 and y=1. The flow field is assumed to be time-
periodic, with period T then [18]

(sin 277y,0), ml<t< (m+%)T
(ux’uy = . 1
(0,sin 27x), (m+§)TSt<(m+1)T
(15)
for m=0,1,2,... . The initial state is given by
1, 0=x<j
C(0,x,y) = (16)

-1, i=x<l.

The case T=1.6 is “globally chaotic,” i.e., there are no large
nonchaotic islands in the flow, while for the lower values of
period T the chaotic regions coexist with quasiperiodic ones.

In order to verify our results we use the similarity be-
tween the advection-diffusion equation (1) and Fokker-Plank
equation of a diffusive process [19]. Linear functionals of the
solution of Eq. (1) can then be estimated by a Monte Carlo
method and the required computational resources do not de-
pend on Pe, the details are given in the Appendix.

The performance of the method in the fully chaotic case
T=1.6 is illustrated in Fig. 1. The Monte Carlo method pre-
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FIG. 1. Performance of the method: (a) {(C?) as a function of
time for Pe=10%, Pe=108, Pe=10'2, and T=1.6 by the Monte Carlo
method (symbols) and by the coarse-grained simulations (curves);
(b) B as a function of Pe is shown on the insertion. (c?) as a func-
tion of time for Ax=60"', Ax=120"', Ax=180"', Pe=10%, and
T=1.6. The time evolution of (C?) is shown by a dashed line.

dicts that after an initial period which depends (logarithmi-
cally) on Pe, C? decays exponentially. It follows from Eq.
(10) that the slope of C? in Fig. 1(a) is —2\/3. Since in this
case the stretching rate A=1.2, we are able to extract the
parameter 3 from our Monte Carlo simulations. As one can
see, 3 varies very slowly with Pe. The mechanism of mixing
has two stages, at the first stage the variations of the scalar
pass from the large to the subgrid scales. This process is
mesh dependent; a fine mesh resolves more details of the
concentration field and the scale-to-scale transport is slower,
while the overall dissipation rate does not depend strongly on
Ax. At the second stage C2, which is mainly at the subgrid
level, decays exponentially.

The fully chaotic case is very simple for analysis. Since
the system is well mixed, even the zero-dimensional model
(10) captures the main features of the process. A more inter-
esting test case is when 7=1.0 and the chaotic region coex-
ists with nonchaotic islands. The process consists of three
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FIG. 2. (C?) as a function of time for the semichaotic case
T=1.0 by the Monte Carlo method (symbols) and by the coarse-
grained simulations (curves) for Ax=60"" and Ax=240"!, respec-
tively; (c?) is shown by dashed lines; 3 is the same as in Fig. 1(a).
(a) Pe=108, (b) Pe=10"2

stages as it is shown in Fig. 2. Initially variations of the
concentration are transported to the subgrid scales in the cha-
otic region, but no dissipation occurs at this stage. When the
characteristic striation thickness becomes small enough, the
diffusion leads to fast dissipation in the chaotic region. At the
third stage the mixing rate drops down and “dissolving” of
the laminar island becomes the rate-limiting process. At this
stage the accuracy of the predictions depends on the ability
of the method to resolve the nonchaotic regions properly. As
it is demonstrated in Fig. 2, a coarse mesh overestimates the
mass transfer from the laminar islands and mesh refinement
is necessary to achieve a reasonable agreement between the
predictions of the method and the results of the Monte Carlo
simulations.

Figure 3 shows C and c¢? after 20 periods of the mixing.
As we can see, the subgrid variation of the scalar concentra-
tion is low in the chaotic region (due to the intensive mixing)
and inside the laminar islands (due to the total lack of the
mixing). The scale-to-scale transport occurs in a thin layer at
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FIG. 3. (a) C and (b) ¢? after 20 periods of mixing for semicha-
otic case T=1.0; Pe=10"'2 and Ax=240"".

the boundary of the laminar island and the precision of the
method depends on the proper resolution of this layer. Since
the artificial diffusivity increases the thickness of the inter-
face and overestimates the mass flux across the boundary, it
is of crucial importance to keep the scheme diffusivity as low
as possible.

IV. CONCLUSIONS

We have proposed and tested an approximate method for
the simulation of chaotic mixing with high Péclet numbers
on coarse grids. The method adopts the ideas which have
been used in the simulation of turbulent flows, namely direct
resolution of large scales which then transfer variation of the
scalar to the subgrid scales as in large-eddy simulations. The
subgrid scales are modeled through mean field variables: the
coarse-grained mixedness ¢? and tensor A;j=dcl dx;dcl ox;j,
i.e., the proposed method is very similar to the k-e model of
turbulence. While in turbulent flows the transport of the ki-
netic energy to the subgrid scales is done by a turbulent
viscosity, in the present model we use a purely numerical
artefact, the scheme diffusion. Each time the finite volume
method cannot resolve the profile of the concentration, the
solution is spread over nearby control volumes and the cor-
responding amount of mixedness is added to the subgrid
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level. The analogy with turbulent flows modeling can be ex-
tended to chaotic mixing with chemical reactions. Since the
dissipation rate A, which is explicitly tracked by the pro-
posed method plays a central role in flamelet and conditional
moment closure (CMC) models of turbulent combustion
[20,21], a similar approach can be incorporated in the pro-
posed model of chaotic mixing.

The method works reasonably well in the chaotic region.
In order to be able to predict mixing in real situations, the
method has to resolve the thin layer at the boundary between
laminar and chaotic regions properly. Since the method used
in the present investigation, namely, first-order upwind pre-
dictor and second-order central differences corrector has a
high scheme diffusion, use of more advanced higher-order
WENO schemes [22] should improve the performance of the
method.

APPENDIX: MONTE CARLO METHOD FOR ESTIMATION
OF THE QUALITY OF THE MIXING

We use the similarity between the advection-diffusion
equation (1) and Fokker-Plank equation of a diffusive pro-
cess [19]. Linear functionals of the solution of Eq. (1) can
then be estimated by a statistical simulation Monte Carlo
method and the required computational resources do not de-
pend on Pe. If one considers Eq. (1) as the forward Kolmog-
orov or Fokker-Planck equation of a stochastic process [here
we use the fact that d, ;=0 and u; in Eq. (1) can be taken
out of the divergence operator], the backward Kolmogorov
equation of the same process reads

acC ac

€ 17C

-— =0, Al
ar Mkaxk Pe &xi (Al

where 7=—t is backward directed time. In order to calculate
the quality of the mixing in a point x at a time ¢ we track a
tracer particle backward in time according to the stochastic
differential equation that corresponds to Eq. (A1),

PHYSICAL REVIEW E 73, 056707 (2006)

dx(7) == u(7,x)d7+ \2/Pe dw;, x(1) = x?, (A2)

where dW, is the increment of a Wiener process with unit
dispersion. The concentration at the point x° can be esti-
mated by the Monte Carlo method as C(x°)=(£), where

£=1,
E=-1.

and (-) means mathematical expectation. (), denotes the sub-
sets of the domain ) where the scalar is initially placed,
0,=0\Q,.

Consider two statistically independent diffusion trajecto-
ries which start at the point x° at the same time. Since they
are independent

x(O) S Ql,
x(0) € Qy,

(&1&)=(ENE) = Cz(xo).

Thus, only two random trajectories suffice in order to obtain
an unbiased Monte Carlo estimate for the variation of the
concentration at a point. The estimation (A3) can be ex-
tended to the case of n independent trajectories

(A3)

n—1,n

> &g

i=1,j=i+1

20,0\ _
) = nn-1)

(Ad)
It can be shown that the random error of the estimate (A4)
decreases approximately by factor 2 when n increases to 15
and then decreases slowly as n— .

Therefore, the Monte Carlo algorithm for the calculation
of {C?) reads as follows:

(1) Generate a uniformly distributed point x°.

(2) Track a random trajectory (A2) with the initial condi-
tions x.

(3) Repeat step 2 n times and estimate C2(x®) according to
Eq. (A4).

(4) Repeat steps 1-3 N times (N>>1) and average the
results obtained.
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